Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Microbiol ; 8(8): 1574-1586, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429908

RESUMO

Nitric oxide (NO) is a highly reactive and climate-active molecule and a key intermediate in the microbial nitrogen cycle. Despite its role in the evolution of denitrification and aerobic respiration, high redox potential and capacity to sustain microbial growth, our understanding of NO-reducing microorganisms remains limited due to the absence of NO-reducing microbial cultures obtained directly from the environment using NO as a substrate. Here, using a continuous bioreactor and a constant supply of NO as the sole electron acceptor, we enriched and characterized a microbial community dominated by two previously unknown microorganisms that grow at nanomolar NO concentrations and survive high amounts (>6 µM) of this toxic gas, reducing it to N2 with little to non-detectable production of the greenhouse gas nitrous oxide. These results provide insight into the physiology of NO-reducing microorganisms, which have pivotal roles in the control of climate-active gases, waste removal, and evolution of nitrate and oxygen respiration.


Assuntos
Microbiota , Óxido Nítrico , Desnitrificação , Nitrogênio/química , Gases , Reatores Biológicos
3.
Curr Opin Biotechnol ; 67: 42-48, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33444876

RESUMO

Diverse nitrogen-transforming microorganisms with a wide variety of physiological properties are employed for biological nitrogen removal from wastewater. There are many technologies that achieve the required nitrogen discharge standards; however, greenhouse gas emissions and energy consumption constitute the bulk of the environmental footprint of wastewater treatment plants. In this review, we highlight current and proposed approaches aiming to achieve more energy-efficient and environment-friendly biological nitrogen removal, discuss whether new discoveries in microbial physiology of nitrogen-transforming microorganisms could be used to reduce greenhouse gas emissions, and summarize recent advances in ammonium recovery from wastewater.


Assuntos
Compostos de Amônio , Purificação da Água , Nitrogênio , Águas Residuárias
4.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126939

RESUMO

In polyextremophiles, i.e., microorganisms growing preferentially under multiple extremes, synergistic effects may allow growth when application of the same extremes alone would not. High hydrostatic pressure (HP) is rarely considered in studies of polyextremophiles, and its role in potentially enhancing tolerance to other extremes remains unclear. Here, we investigated the HP-temperature response in Clostridium paradoxum, a haloalkaliphilic moderately thermophilic endospore-forming bacterium, in the range of 50 to 70°C and 0.1 to 30 MPa. At ambient pressure, growth limits were extended from the previously reported 63°C to 70°C, defining C. paradoxum as an actual thermophile. Concomitant application of high HP and temperature compared to standard conditions (i.e., ambient pressure and 50°C) remarkably enhanced growth, with an optimum growth rate observed at 22 MPa and 60°C. HP distinctively defined C. paradoxum physiology, as at 22 MPa biomass, production increased by 75% and the release of fermentation products per cell decreased by >50% compared to ambient pressure. This metabolic modulation was apparently linked to an energy-preserving mechanism triggered by HP, involving a shift toward pyruvate as the preferred energy and carbon source. High HPs decreased cell damage, as determined by Syto9 and propidium iodide staining, despite no organic solute being accumulated intracellularly. A distinct reduction in carbon chain length of phospholipid fatty acids (PLFAs) and an increase in the amount of branched-chain PLFAs occurred at high HP. Our results describe a multifaceted, cause-and-effect relationship between HP and cell metabolism, stressing the importance of applying HP to define the boundaries for life under polyextreme conditions.IMPORTANCE Hydrostatic pressure (HP) is a fundamental parameter influencing biochemical reactions and cell physiology; however, it is less frequently applied than other factors, such as pH, temperature, and salinity, when studying polyextremophilic microorganisms. In particular, how HP affects microbial tolerance to other and multiple extremes remains unclear. Here, we show that under polyextreme conditions of high pH and temperature, Clostridium paradoxum demonstrates a moderately piezophilic nature as cultures grow to highest cell densities and most efficiently at a specific combination of temperature and HP. Our results highlight the importance of considering HP when exploring microbial physiology under extreme conditions and thus have implications for defining the limits for microbial life in nature and for optimizing industrial bioprocesses occurring under multiple extremes.


Assuntos
Membrana Celular/química , Clostridium/química , Clostridium/fisiologia , Metabolismo Energético , Pressão Hidrostática , Temperatura
5.
Mar Pollut Bull ; 129(1): 61-69, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29680568

RESUMO

Microplastics are small plastic particles, globally distributed throughout the oceans. To properly study them, all the methodologies for their sampling, extraction, and measurement should be standardized. For heterogeneous samples containing sediments, animal tissues and zooplankton, several procedures have been described. However, definitive methodologies for samples, rich in algae and plant material, have not yet been developed. The aim of this study was to find the best extraction protocol for vegetal-rich samples by comparing the efficacies of five previously described digestion methods, and a novel density separation method. A protocol using 96% ethanol for density separation was better than the five digestion methods tested, even better than using H2O2 digestion. As it was the most efficient, simple, safe and inexpensive method for isolating microplastics from vegetal rich samples, we recommend it as a standard separation method.


Assuntos
Fracionamento Químico/métodos , Monitoramento Ambiental/métodos , Plásticos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Ácidos/química , Álcalis/química , Animais , Organismos Aquáticos/química , Etanol/química , Peróxido de Hidrogênio/química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...